Особенности металлической кристаллической решетки
Кристаллические решетки. Типы кристаллических решеток.
Большинство твердых веществ имеют кристаллическую структуру, в которой частицы, из которых она «построена» находятся в определенном порядке, создавая тем самым кристаллическую решетку. Она строится из повторяющихся одинаковых структурных единиц — элементарных ячеек, которая связывается с соседними ячейками, образуя дополнительные узлы. В результате существует 14 различных кристаллических решеток.
Особенности металлической кристаллической решетки
Химическая связь может возникнуть при электростатическом притяжении двух разноименных ионов — катиона и аниона, например, K + и I − . Перекрывание атомных орбиталей в этом случае незначительно, и электронная плотность распределена неравномерно, недостаток её будет у атома калия, а избыток — у атома иода.
Ионную связь (K + )−(I − ) рассматривают как предельный случай ковалентной связи.
Общая пара электронов в случае ионной связи практически полностью смещена к аниону. Обычно это происходит в соединениях элементов с большой разностью электроотрицательности (например, в соединениях CsF, NaBr, K2O, Rb2S, Li3N и др.).
Все эти соединения при обычных условиях представляют собой ионные кристаллы (кристаллы, построенные из катионов и анионов), например кристаллы иодида калия или хлорида натрия.
Металлическая связь. Металлические кристаллы
В металлах валентные электроны удерживаются атомами крайне слабо и способны мигрировать. Атомы, оставшиеся без внешних электронов, приобретают положительный заряд. Они образуют металлическую кристаллическую решётку.
Совокупность обобществлённых валентных электронов (электронный газ), заряженных отрицательно, удерживает положительные ионы металла в определённых точках пространства — узлах кристаллической решётки, например, металла серебро.
Внешние электроны могут свободно и хаотично перемещаться, поэтому металлы характеризуются высокой электропроводностью (особенно золото, серебро, медь, алюминий).
Атомные и молекулярные кристаллы
В твердом агрегатном состоянии у веществ могут образоваться не только ионные, но также молекулярные и атомные кристаллические решетки.
Так, твердый иод имеют молекулярную кристаллическую решетку, в узлах которых находятся молекулы I2.
Аналогичным образом построена кристаллическая решетка твердого диоксида углерода (сухой лед) — в узлах кристаллической решетки находятся молекулы CO2.
Алмаз и графит — кристаллы с атомной решеткой, имеющей в узлах атомы углерода с разным расположением этих узлов в пространстве.
![]() кристаллическая решетка алмаза | ![]() кристаллическая решетка графита |
Водородная связь
При изучении многих веществ были обнаружены так называемые водородные связи.
Например, молекулы HF в жидком фтороводороде связаны между собой водородной связью, аналогично связаны молекулы Н2О в жидкой воде или в кристалле льда, а также молекулы NH3 и Н2О между собой в межмолекулярном соединении — гидрате аммиака NH3 · Н2О.
Водородная связь образуется за счёт сил электростатического притяжения водородсодержащих полярных молекул, содержащих атомы наиболее электроотрицательных элементов — F, O, N. Например, водородные связи имеются в HF, Н2О, NH3, но их нет в HCl, Н2S, PH3.
Водородные связи малоустойчивы и разрушаются довольно легко (например при плавлении льда, кипении воды). Однако на разрыв этих связей затрачивается некоторая дополнительная энергия, и поэтому температуры плавления и кипения веществ с водородными связями между молекулами оказываются значительно выше, чем у подобных веществ, но без водородных связей:
Как происходит процесс обработки
Специалисты нашей компании для получения цинкового покрытия высокого качества используют современное оборудование немецко-австрийской фирмы KVK KOERNER и чешской компании EKOMOR. Процесс обработки проводится в несколько этапов:
- Очистка конструкции при помощи механического, химического или ультразвукового воздействия. На нашем предприятии для этих целей применяют пескоструйное, дробеметное и ультразвуковое оборудование.
- Помещение изделий в рабочий бокс (контейнер), в который впоследствии добавляют цинкосодержащий порошок.
- Герметизация рабочего контейнера, создание и поддержание внутри бокса требуемой температуры (на уровне 450 °C). В зависимости от величины обрабатываемой площади и заданной толщины цинкового слоя детали содержат в боксе от 1 до 4 часов. В течение этого времени молекулы цинка испаряются и проникают в кристаллическую решетку металлической поверхности изделия.
- Обработанные детали извлекают из бокса, с их поверхности удаляют остатки частиц порошка, а затем моют.
- Для придания деталям декоративных свойств их подвергают пассивации.
Особенности строения металлов в кристаллическом состоянии.
Задачи 758.
На основе метода молекулярных орбиталей (МО) объяснить особенности строения металлов в кристаллическом состоянии.
Решение:
Металлы обладают высокой электрической проводимостью, причем переносчиками тока в металлах служат электроны. Это говорит о том, что в металлах имеются «свободные» электроны, способные перемещаться по кристаллу под действием даже слабых электрических полей.
В то же время неметаллы в кристаллическом состоянии обычно представляют собою изоляторы и, следовательно, не содержат свободных электронов. Причины этих различий можно объяснить на основе метода молекулярных орбиталей (метод МО).
Согласно методу МО при взаимодействии двух одинаковых атомов вместо двух энергетически равноценных исходных атомных орбиталей образуются две молекулярные орбитали, отвечающие различным уровням энергии. Если взаимодействуют три атома, причем их валентные орбитали заметно перекрываются, то возникают не две, а три молекулярные орбитали, в равной степени принадлежащие всем трем атомам (делокализованные орбитали) характеризующиеся тремя различными значениями энергии. При последовательном увеличении числа взаимодействующих атомов добавление каждого из них приводит к образованию еще одного энергетического уровня и к дальнейшей делокализации молекулярных орбиталей (т. е. к распространению их на большее число атомов); общее число энергетических уровней будет при этом равно числу взаимодействующих атомов. Схема подобного процесса представлена на рис. 1.
Рис. 1. Изменение энергий молекулярных орбиталей
При увеличении числа реагирующих атомов
Как показывает эта схема, с ростом числа атомов возрастает число разрешенных энергетических состояний, а расстояния между соседними энергетическими уровнями уменшаются. При небольшом числе взаимодействующих атомов для перевода электрона с какого-либо энергетического уровня на ближайший более высокий уровень необходима затрата сравнительно большой энергии. Но при большом числе атомов N (в макроскопическом кристалле N имеет порядок числа Авогадро) соседние уровни настолько мало различаются, что образуется практически непрерывная энергетическая зона, и переход электрона на ближайший более высокий уровень может осуществиться при затрате ничтожно малой энергии. Если такой ближайший уровень не занят электронами, то находящийся на предшествующем уровне электрон ведет себя как вследствие делокализованности орбиталей он может перемещаться по кристаллу при сколь угодно малых энергетических воздействиях. Ширину запрещенной зоны определяет тип кристалла: металла, полупроводника или диэлектрика рис. 2.
Заполнение электронами МО, составляющих энергетическую зону, происходит в порядке последовательного возрастания энергии. При этом, в соответствии с принципом Паули, на каждой МО может размещаться по два электрона.
Соответственно в s- зоне может быть не более 2N электронов, в р-зоне — не более 6N электронов, а в d-зоне — не более 10N электронов.
Зона, полностью заполненная электронами, называется валентной. Зона, свободная от электронов и находящаяся по энергии выше валентной зоны, называется зоной проводимости. Валентная зона и зона проводимости могут либо перекрываться, либо не перекрываться друг с другом. Если эти зоны не перекрываются друг с другом, то между ними существует запрещенная зона с шириной.
Рис. 2. Зонная структура металла.
У металлов валентные зоны и зоны проводимости перекрываются. Так, у s — и р-металлов перекрываются внешние s- и р-орбитали. Так как число электронов на этих орбиталях меньше удвоенного числа МО, то имеется большое число незанятых МО в зоне проводимости. Энергии МО в зоне проводимости относительно мало отличаются друг от друга, поэтому электроны при очень незначительных возбуждениях легко переходят с одной МО на следующую МО, что и обеспечивает электрическую проводимость и теплопроводность. При повышении температуры все большее число электронов переходит на вакантные МО в зоне проводимости, что приводит к уменьшению числа вакантных МО и соответственно к снижению электрической проводимости. У d-элементов происходит перекрывание ns-, np- и (n-1)d-зон. Однако d-зона относительно неширокая, поэтому можно считать, что часть d-электронов в металлах локализованы, т.е. образуются ковалентные связи между соседними атомами и обусловливают повышение температуры плавления и механической прочности d-элементов и особенно элементов в середине и в конце периодов (IV-VIII групп).
Способы добывания металлов из руд
Задача 759.
Указать важнейшие способы добывания металлов из руд.
Решение:
а) Важнейший способ добывания металлов из руд основан на восстановлении их оксидов углём или оксидом углерода (II):
Например, выплавка чугуна производится восстановлением железных руд оксидом углерода (II):
б) При переработке сульфидных руд сначала переводят сульфиды в оксиды путём обжига, а затем уже восстанавливают полученные оксиды углем, например:
2ZnS + 3O2 = 2ZnO + 2SO2;
ZnO + C — Zn + CO↑.
в) Гидрометаллургические методы извлечения металлов из руд в виде их соединений водными растворами с различными реагентами и с последующим извлечением металла из раствора. Например, извлечение золота из руд с помощью растворов цианидов калия или натрия (1987 год П. Р. Багратион):
Из полученного раствора золото выделяют цинком:
г) Метод восстановления оксидов металлов сильными восстановителями. Для металлов не восстанавливаемых ни углём, ни СО, применяются более сильные восстановители как-то водород, магний, алюминий, кремний и др. Восстановление металла из его оксида с помощью другого металла называется металлотермией, например:
д) Метод электролиза. Электролизом получают металлы, оксиды которых очень прочны (алюминий, магний и др.), получают электролизом расплавов их руд. Для получения щелочных металлов используют электролиз расплавов солей, например, электролизом расплава сильвинита можно получить калий.
е) Метод обжига руды. Для получения некоторых металлов используют метод обжига руды. Например, получение ртути из киновари:
Тонкослойная огнезащита металла
Основной функцией огнезащиты металла является защита его от нагрева. То есть, слой защиты должен иметь теплоизолирующие свойства. Значит, этот слой должен обладать низкой теплопроводностью. Теплопроводность обратно пропорциональна толщине изоляционного слоя. Поэтому тонкий слой будет иметь низкую эффективность, разве что он будет состоять из абсолютного вакуума
Защитные покрытия для металла обычно состоят из негорючих материалов с низкой теплопроводностью. Часто такой материал вспенивается при нагреве, создавая толстый теплоизолирующий слой из газовых пузырьков в тонкой негорючей оболочке. Также есть краски, содержащие тонкостенные микрокапсулы с вакуумом внутри. Даже тонкий слой такого покрытия создает эффективную теплоизоляцию.
Вещества с атомной кристаллической решеткой, как правило, имеют в своих узлах, состоящих собственно из атомов сильные ковалентные связи. Ковалентная связь происходит, когда два одинаковых атома делятся друг с другом по-братски электронами, образуя, таким образом, общую пару электронов для соседних атомов. Из-за этого ковалентные связи сильно и равномерно связывают атомы в строгом порядке – пожалуй, это самая характерная черта строения атомной кристаллической решетки. Химические элементы с подобными связями могут похвастаться своей твердостью, высокой температурой плавления. Атомную кристаллическую решетку имеют такие химические элементы как алмаз, кремний, германий, бор.
Молекулярный тип кристаллической решетки характеризуется наличием устойчивых и плотноупакованных молекул. Они располагаются в узлах кристаллической решетки. В этих узлах они удерживаются такими себе вандервальсовыми силами, которые в десять раз слабее сил ионного взаимодействия. Ярким примером молекулярной кристаллической решетки является лед – твердое вещество, имеющее однако свойство переходить в жидкое – связи между молекулами кристаллической решетки совсем слабенькие.
1.3.3. Вещества молекулярного и немолекулярного строения. Тип кристаллической решётки. Зависимость свойств веществ от их состава и строения.
Для большинства веществ характерна способность в зависимости от условий находиться в одном из трех агрегатных состояний: твердом, жидком или газообразном.
Например, вода при нормальном давлении в интервале температур 0-100 o C является жидкостью, при температуре выше 100 о С способна существовать только в газообразном состоянии, а при температуре менее 0 о С представляет собой твердое вещество.
Вещества в твердом состоянии различают аморфные и кристаллические.
Характерными признаками аморфных веществ является отсутствие четкой температуры плавления: их текучесть плавно увеличивается с ростом температуры. К аморфным веществам относятся такие соединения, как воск, парафин, большинство пластмасс, стекло и т.д.
Все же кристаллические вещества обладают конкретной температурой плавления, т.е. вещество с кристаллическим строением переходит из твердого состоянии в жидкое не постепенно, а резко, при достижении конкретной температуры. В качестве примера кристаллических веществ можно привести поваренную соль, сахар, лед.
Разница в физических свойствах аморфных и кристаллических твердых веществ обусловлена прежде всего особенностями строения таких веществ. В чем заключается разница между веществом в аморфном и кристаллическом состоянии, проще всего понять из следующей иллюстрации:
Как можно заметить, в аморфном веществе, в отличие от кристаллического, отсутствует какой-либо порядок в расположении частиц. Если же в кристаллическом веществе мысленно соединить прямой два близкорасположенных друг к другу атома, то можно обнаружить, что на этой линии на строго определенных промежутках будут лежать одни и те же частицы:
Таким образом, в случае кристаллических веществах можно говорить о таком понятии, как кристаллическая решетка.
Кристаллической решеткой называют пространственный каркас, соединяющий точки пространства, в которых находятся частицы, образующие кристалл.
Точки пространства, в которых находятся образующие кристалл частицы, называют узлами кристаллической решетки.
В зависимости от того, какие частицы находятся в узлах кристаллической решетки, различают: молекулярную, атомную, ионную и металлическую кристаллические решетки.
В узлах молекулярной кристаллической решетки
находятся молекулы, внутри которых атомы связаны прочными ковалентными связями, однако сами молекулы удерживаются друг возле друга слабыми межмолекулярными силами. Вследствие таких слабых межмолекулярных взаимодействий кристаллы с молекулярной решеткой являются непрочными. Такие вещества от веществ с иными типами строения отличаются существенно более низкими температурами плавления и кипения, не проводят электрический ток, могут как растворяться, так и не растворяться в различных растворителях. Растворы таких соединений могут как проводить, так и не проводить электрический ток в зависимости от класса соединения. К соединениям с молекулярной кристаллической решеткой относятся многие простые вещества — неметаллы (отвержденные H2, O2, Cl2, ромбическая сера S8, белый фосфор P4), а также многие сложные вещества – водородные соединения неметаллов, кислоты, оксиды неметаллов, большинство органических веществ. Следует отметить, что, если вещество находится в газообразном или жидком состоянии, говорить о молекулярной кристаллической решетке неуместно: корректнее использовать термин — молекулярный тип строения.
Кристаллическая решетка алмаза как пример атомной решетки
В узлах атомной кристаллической решетки
находятся атомы. При этом все узлы такой кристаллической решетки «сшиты» между собой посредством прочных ковалентных связей в единый кристалл. Фактически, такой кристалл является одной гигантской молекулой. Вследствие особенностей строения все вещества с атомной кристаллической решеткой являются твердыми, обладают высокими температурами плавления, химически мало активны, не растворимы ни в воде, ни в органических растворителях, а их расплавы не проводят электрический ток. Следует запомнить, что к веществам с атомным типом строения из простых веществ относятся бор B, углерод C (алмаз и графит), кремний Si, из сложных веществ — диоксид кремния SiO2 (кварц), карбид кремния SiC, нитрид бора BN.
У веществ с ионной кристаллической решеткой
в узлах решетки находятся ионы, связанные друг с другом посредством ионных связей.
Поскольку ионные связи достаточно прочны, вещества с ионной решеткой обладают сравнительно высокой твердостью и тугоплавкостью. Чаще всего они растворимы в воде, а их растворы, как и расплавы проводят электрический ток.
К веществам с ионным типом кристаллической решетки относятся соли металлов и аммония (NH4 + ), основания, оксиды металлов. Верным признаком ионного строения вещества является наличие в его составе одновременно атомов типичного металла и неметалла.
Кристаллическая решетка хлорида натрия как пример ионной решетки
Однако следует отметить, что в веществах с ионным типом строения нередко можно обнаружить, помимо ионных, также ковалентные полярные связи. Это наблюдается в случае сложных ионов, т.е. состоящих из двух или более химических элементов (SO4 2- , NH4 + , PO4 3- и т.д.). Внутри таких сложных ионов атомы связаны друг с другом ковалентными связями.
Металлическая кристаллическая решетка
наблюдается в кристаллах свободных металлов, например, натрия Na, железа Fe, магния Mg и т.д. В случае металлической кристаллической решетки, в ее узлах находятся катионы и атомы металлов, между которыми движутся электроны. При этом движущиеся электроны периодически присоединяются к катионам, таким образом нейтрализуя их заряд, а отдельные нейтральные атомы металлов взамен «отпускают» часть своих электронов, превращаясь, в свою очередь, в катионы. Фактически, «свободные» электроны принадлежат не отдельным атомам, а всему кристаллу.
Металлическая кристаллическая решетка
Такие особенности строения приводят к тому, что металлы хорошо проводят тепло и электрический ток, часто обладают высокой пластичностью (ковкостью).
Разброс значений температур плавления металлов очень велик. Так, например, температура плавления ртути составляет примерно минус 39 о С (жидкая в обычных условиях), а вольфрама — 3422 °C. Следует отметить, что в обычных условиях все металлы, кроме ртути, являются твердыми веществами.
Механические свойства стали
Для получения данных по механическим свойствам металла проводятся специальные испытания на специальном оборудовании. На значение параметров оказывают влияние химический состав, температура испытаний, вид и продолжительность термообработки (закалка, отжиг, отпуск), геометрические размеры заготовок. Так, например, при помощи нормализации (предварительной термообработки) улучшают процесс резания, с помощью закалки усиливают прочность, твёрдость, устойчивость к износу и т.д. То есть, манипулируя этими факторами можно добиться ослабления или усиления тех или иных качеств. Притом, термообработке могут подвергаться как заготовки, так и готовые изделия.
Предел прочности – измеряется в кгс/см² или в МПА. Испытание на прочность проводится на специальных станах. Один конец металлического изделия закрепляется неподвижно в тисках, другой прикрепляется к механическому или гидравлическому приводу. Плавно нарастающее усилие (на разрыв, скручивание, сжатие или изгиб) фиксируется электронными следящими устройствами. Максимальное усилие, при котором начинает разрушаться металл и будет порогом прочности. Поскольку испытания проводятся в четырёх вариантах, как было сказано выше, то различают предел прочности на разрыв, предел прочности на изгиб, предел прочности на сжатие и предел прочности на скручивание. Так для стали 45 предел прочности при растяжении равен 550-690 МПА;
Предел текучести – связан с предыдущим параметром и являет собой такое напряжение на разрыв, при котором начинаются необратимые деструктивные процессы разрушения металла (кристаллической решетки) без наращивания нагрузки.
Предел текучести стали 45 при повышении температуры испытаний от 200°С до 1200°С падает от 340 Мпа до 15 МПА.
Твёрдость – характеризуется способностью стали сопротивляться воздействию (статическому, динамическому, кинематическому) объектов из более твёрдого материала (индеторам), изготовленных из очень твёрдых сплавов или из алмаза. Существует несколько способов измерения твёрдости – по Бринеллю, по Роквеллу, по Виккерсу, по методу Шора.
Согласно ГОСТ 1050 твёрдость металлопродукции из стали 45:
- горячекатаной, без термической обработки — 229 НВ;
- горячекатаной после отжига или высокого отпуска – 197 НВ;
- калиброванной со специальной отделкой поверхности нагартованной – 241НВ;
- калиброванной и со специальной отделкой поверхности после отжига или высокого отпуска – 197 НВ.
Пластичность – важное свойство металла, не позволяющее ему растрескиваться и ломаться под воздействием нагрузок. Пластичный металл при растяжении, сжатии или скручивании до достижения порога текучести сохранит изначальную форму, за пределами порога текучести – согнется, деформируется, но не треснет, не сломается. Измеряется в МПА.
Ударная вязкость – отражает силу, после приложения которой, происходит хрупкое разрушение металла. Этот параметр зависит от температуры эксплуатации деталей, от микроструктуры металла, от чистоты стали или от наличия определенных примесей в сплаве.
Зависимость величины ударной вязкости от вида термообработки хорошо демонстрирует следующий пример. При испытании стальных прутков диаметром 25 мм с разным типом термообработки и при температуре 20°С результаты выглядят следующим образом:
- для горячекатаного прутка – 14-15 Дж/см²;
- для прутка, прошедшего отжиг – 42-47 Дж/см²;
- для прутка с нормализацией – 49=52 Дж/см²;
- для прутка с термообработкой типа закалки и отпуска – 110-123 Дж/см2
При постепенном понижении температуры испытаний до -60°С ударная вязкость понижается, т.е. металл становится хрупким.
Практическое применение: от ДНК до далекой звезды
Дифракционные решетки широко применяются в различных оптических устройствах: спектральных приборах для получения монохроматического света (монохроматоры, спектрофотометры и др.), в качестве оптических датчиков линейных и угловых перемещений, для поляризаторов и оптических фильтров и даже в так называемых антибликовых очках.
Дифракционные решетки нашли свое применение во многих научных исследованиях. Например, этот прибор лег в основу рентгеноструктурного анализа – самого распространенного метода определения структуры вещества. Этот способ заключается в измерении параметров кристаллической решетки посредством дифракции рентгеновских лучей. То есть в данном случае дифракционная решетка используется не для определения длины волны света, а для обратной задачи – нахождения по длине волны постоянной решетки (расстояния между штрихами).
В настоящее время широко используют рентгеноструктурный анализ биологических молекул и систем. Так, например, по данным, полученным этим методом, из нескольких возможных химических формул пенициллина была выбрана одна. В свое время этим методом были с успехом исследованы такие высокополимерные соединения, как каучук, целлюлоза, многие полиамиды и т.д. Именно с помощью рентгеноструктурного анализа американец Джеймс Уотсон и англичанин Френсис Крик установили структуру молекулы ДНК (двойная спираль), за что и были удостоены в 1962 году Нобелевской премии.
Сегодня изделия дифракционной оптики применяются для научных исследований в области экологии. Например, в составе гиперспектральных камер для оценки качества воздуха. С их помощью определяют состав и состояние объекта съемки, фиксируя спектральные характеристики каждого пикселя на изображении.
Государственный институт прикладной оптики (ГИПО) холдинга «Швабе» – крупнейший производитель дифракционной оптики в России – поставляет для этих целей решетки и за рубеж. Только за прошлый год было поставлено более 400 изделий в Германию, Ирландию, Норвегию, Словакию и другие страны.
Дифракционная решетка шагнула и далеко за пределы Земли. С ее помощью, например, можно узнать химический состав далеких звезд. Свет, идущий от звезды, собирают зеркалами и направляют на решетку. Таким образом можно узнать все длины волн спектра, а значит, и химические элементы, которые их излучают.
События, связанные с этим
Облакомер: дотянуться до облаков
Звезда по имени Солнце: о совместном проекте «Швабе» и РАН