Rosnerud-spb.ru

Ремонт СПБ
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Резка тонкого листового металла

Наиболее продуктивными и востребованными технологиями считаются лазерная и плазменная резка материала. Можно также использовать традиционные механические инструменты (ножницы, гильотину, циркулярную пилу), гидроабразивный или электроэрозионный метод, фрезеровку, сверление. Распространено применение просечных прессов — преимущественно для изготовления просечно-вытяжных изделий из мягких металлов (жести, алюминия). Популярен и газокислородный способ, применяемый во многих отраслях промышленности, но образующий широкий, неровный, часто неаккуратный срез, не дающий возможность провести раскрой тонкого листового проката.

Раскрой с помощью лазера

Лазерный раскрой металлов позволяет с высокой скоростью реза и точностью результата выполнять обработку практически любого проката (включая цветной и нержавеющий) в формате листов.

Сначала заготовка разогревается по нужной линии толщиной от 0,07 до 0,1 мм лазерным лучом. Управляется процесс специальным программным обеспечением на компьютере. Материал под нагревом плавится и разрушается по линии реза. Затем подается вспомогательный газ, ликвидирующий продукты деструкции.

Преимущества использования лазера для резки листового металлического проката:

  • доступная стоимость;
  • возможность обработки твердых или, напротив, хрупких сплавов;
  • высокая скорость;
  • достаточная производительность;
  • хорошее качество реза даже при сложных конфигурациях;
  • отсутствие механического контакта с материалом;
  • экономный расход металла.

Детали, полученные лазерным раскроем листового металла, не требуют дальнейшей обработки.

В работе следует придерживаться некоторых рекомендаций. Не стоит подвергать обработке изначально некачественный, например, имеющий следы коррозии или значительные неровности прокат. Итоговый результат также зависит от расположения деталей на листе — они должны находиться от края листа не ближе, чем в 10 мм; друг от друга — на расстоянии не меньше, чем 5-10 мм.

Повысить качество реза можно, применяя листы металла со скругленными углами, режущая головка не замедляется настолько, как на прямоугольных угловых участках.

Плазменный раскрой металла

В этом случае основным инструментом выступает плазменная струя воздуха, который нагревается до высокой температуры и ионизируется под воздействием электрической дуги. Дуга возникает между электродом и рабочей поверхностью (материалом, подлежащим раскрою) в среде газа, который доставляется в сопло станка под давлением. Температура в месте контакта плазмы с заготовкой достигает 30000 °C и выше — можно разрезать металл толщиной до 100 мм.

Принцип действия плазменно-резательного станка достаточно прост. Между соплом (распылителем) и обрабатываемой поверхностью возникает электрическая дуга, благодаря чему струя воздуха становится режущим элементом. Газовая среда может быть активной (кислород, традиционная воздушная смесь без каких-либо добавок), что нужно для раскроя черных металлов. Неактивные газы (азот, водород, аргон, водяной пар) используются для цветных металлов и сплавов.

Рабочие параметры (мощность дуги, глубина, ширина разреза) корректируются настройками оборудования:

  • состав применяемого вспомогательного газа;
  • сила тока;
  • расстояние от металлической рабочей поверхности до распылителя;
  • размеры основных узлов станка.

Рабочее напряжение и температурные показатели вдоль оси разреза и в сечении струи непостоянны. Их значения тоже определяются настройками, указанными выше.

Значительная температура дает потоку плазмы врезаться в материал практически мгновенно. Если соотношение габаритов листа и мощности дуги оптимально, а все настройки выставлены корректно, луч проникает полностью сквозь всю толщу заготовки, кромки реза получаются строго вертикальными. В процессе резки оператор должен следить за значениями скорости резака — они не должны превышать требуемые уровни, иначе лист будет прорезываться не полностью.

Достоинства плазменной резки заготовок:

  • универсальность применения;
  • возможность раскроя различных видов металла;
  • высокая скорость процесса;
  • получение точного и аккуратного разреза, не требующего последующей механической, химической или иной обработки;
  • способность вырезать детали любой формы, включая самую сложную;
  • работа без необходимости использовать дорогостоящие вспомогательные смеси (ацетилен, кислород, пропан/бутан) повышает экономичность;
  • достаточная безопасность благодаря неиспользованию газовых баллонов, других взрывоопасных предметов;
  • экологическая безопасность раскроя.

Обрабатываемая поверхность не деформируется при резке, а если заготовка была окрашена до того, как начат раскрой металла, никакой предварительной подготовки не требуется. Плазма минимально воздействует на красочный слой, внешний вид детали испорчен не будет.

При раскрое листа металла таким способом следует корректно устанавливать значения параметров, от которых зависит качественная резка материала. Стоит предварительно выполнить пробную резку с использованием более высоких значений мощности, а затем корректировать эту величину в нужную сторону. Параметры движения разрезающего элемента следует устанавливать такие, чтобы с обратной стороны листа, подвергающегося раскрою, были видны искры. Их отсутствие говорит о том, что заготовка не прорезается насквозь из-за:

  • недостаточной силы тока;
  • слишком большой скорости режущего элемента;
  • направления струи под углом, отличным от прямого.

Особенности кислородной резки металла.

Техника резки металла с помощью кислорода делится на два вида:

  • разделительная кислородная резка
  • поверхностная кислородная резка.

Разделительная кислородная резка применяется в том случае, если из листа металла необходимо вырезать заготовку или раскроить лист – то есть, когда необходимо разрезать один лист на несколько частей.

С помощью поверхностной кислородной резки на листе металла можно сделать бороздки, можно удалить с поверхности металла такие дефекты, как слишком сильно выступающий сварной шов, а можно и снять верхний слой с листа, если это потребуется.

По способу выполнения резка металлов с помощью кислорода может быть ручной и машинной.

Центр знаний ЭСАБ

Разрезать лист из низкоуглеродистой стали можно различными способами, которые в разной степени приспособлены для автоматической резки. Некоторые методы лучше подходят для тонких листов, некоторые — для толстых. Одни из них быстрые, другие — медленные. Существуют экономичные и дорогие методы. Кроме того, какие-то методы резки обеспечивают высокую точность, а какие-то — нет. В этой статье приведен краткий обзор четырех основных методов резки, которые используются на станках фигурной резки с ЧПУ, сравниваются слабые и сильные стороны каждого из этих процессов, а также предлагается несколько критериев, на основе которых можно подобрать оптимальный вариант для конкретной ситуации.

Газокислородная резка
Резка с использованием газокислородной горелки, или газопламенная резка, — самый старый способ резки низкоуглеродистой стали. Эта технология считается простой, а оборудование и расходные материалы для нее сравнительно недорогие. Газокислородная горелка может прорезать очень толстый лист, и ее режущая способность ограничена главным образом объемом подаваемого кислорода. Этот метод позволяет разрезать сталь толщиной 900 и даже 1200 мм. Однако, когда речь идет о фигурной резке , основная часть работ выполняется на заготовках толщиной не более 300 мм.

Читать еще:  Гильотинные ножницы для резки листового металла

Правильно отрегулированная газокислородная горелка обеспечивает гладкую и ровную поверхность реза. При этом на нижнем краю образуется небольшое количество шлака, а верхний оказывается немного скруглен из-за воздействия подогревающего пламени. Такая поверхность подходит для различных сфер применения , без дополнительной обработки.

Газокислородная резка оптимальна для листов толщиной более 25 мм, но с определенными сложностями ее можно использовать и на более тонких листах (до 6-8 мм). Это относительно медленный процесс: скорость резки по материалу толщиной 25 мм составляет примерно 500 мм/мин. Еще одним достоинством газокислородной технологии является возможность использовать сразу несколько горелок, что позволяет кратно повысить производительность.

Плазменная резка
Плазменно-дуговая технология отлично подходит для резки пластин из низкоуглеродистой стали. Ее скорость существенно выше, чем скорость газокислородной резки, однако при этом приходится жертвовать качеством краев. Именно в этом и заключается сложность плазменной технологии. С точки зрения качества краев существует оптимальный диапазон толщины материала, которая, в зависимости от тока резки, должна составлять от 6 до 40 мм. Общая прямота среза ухудшается на слишком тонких и толстых листах, толщина которых выходит за пределы указанного диапазона, хотя края при этом могут оставаться достаточно гладкими, а количество окалины — небольшим.

Плазменное оборудование обходится дороже газокислородной горелки, так как для работы всей системы необходимо питание, водяное охлаждение (в системах с силой тока выше 100 А), система управления подачей газа, провода для горелки, соединительные шланги и кабели, а также сама горелка. Однако более высокая производительность плазменной резки по сравнению с газокислородной в перспективе компенсирует повышенную стоимость системы.

При плазменной резке можно использовать несколько горелок, но из-за их высокой стоимости обычно ограничиваются двумя. Тем не менее некоторые заказчики устанавливают на одной машине три или даже четыре плазменные системы: как правило, это крупные производители, на технологических линиях которых выполняется резка большого количества деталей.

Лазерная резка
Лазерная технология подходит для резки низкоуглеродистой стали толщиной до 30 мм. При толщине материала более 25 мм для надежной работы системы необходимо в точности соблюдать все параметры, включая характеристики материала (сталь, пригодная для лазерной резки), чистоту газа, состояние сопла и качество луча.

Лазерная резка — не очень быстрый процесс, так как на низкоуглеродистой стали он фактически сводится к прожиганию листа сфокусированным лазерным лучом вместо использования подогревающего пламени. В связи с этим скорость резки ограничена скоростью химической реакции между железом и кислородом. Лазерная резка — очень точный метод. При ее выполнении создается узкий рез, что позволяет соблюдать высокую точность контура и делать точные небольшие отверстия. Качество краев обычно очень высокое, с крайне небольшими зазубринами и линиями сдвига, очень прямыми краями и практически полным отсутствием окалины.

Еще одним достоинством лазерной технологии является надежность. Расходные материалы эксплуатируются долго, а уровень автоматизации процесса очень высокий, поэтому многие операции, связанные с лазерной резкой, не требуют пристального внимания. Например, вы можете установить на стол лист металла размером 3000 x 1200 мм толщиной 12 мм, запустить систему и уйти домой. Вернувшись утром, вы обнаружите сотни нарезанных деталей, готовых к разгрузке.

Из-за сложностей, связанных с переносом луча, CO2-лазеры не позволяют использовать на одной машине по несколько режущих головок. Однако с волоконными лазерами такая возможность появляется.

Гидроабразивная резка
Гидроабразивная технология также отлично подходит для резки низкоуглеродистой стали и обеспечивает гладкий и исключительно точный срез. Точность гидроабразивной резки может быть выше, чем лазерной, так как при использовании гидроабразивной технологии формируются более гладкие края и отсутствует тепловая деформация. Кроме того, для гидроабразивной технологии отсутствуют ограничения по толщине, характерные для лазерного и плазменного методов. Практическим ограничением при гидроабразивной резке является толщина материала 150–200 мм. Это связано со временем, которое затрачивается на прорезание такого листа, и постепенным отклонением водяной струи.

Недостатком гидроабразивной резки является стоимость. Начальные расходы на приобретение оборудования обычно чуть выше, чем на системы плазменной резки (из-за высокой стоимости насоса, повышающего давление), но ниже, чем на лазерные системы. Однако цена одного часа работы гидроабразивной системы намного выше (главным образом из-за стоимости абразивных частиц, которые подаются вместе с водой в зону реза).

Гидроабразивная технология также позволяет выполнять резку несколькими головками, причем даже с одним повышающим давление насосом. При этом каждая следующая режущая головка требует повышенного расхода воды: для этого необходим либо более мощный насос, либо меньшее отверстие.

Критерии выбора

Как же выбрать оптимальный метод резки?

1. Начните с толщины.

  • Для резки материала толщиной до 20 мм используйте лазерный метод.
  • Для резки материала толщиной до 30 мм используйте плазменный или лазерный метод.
  • Для резки материала толщиной до 65 мм используйте гидроабразивный или плазменный метод.
  • Для резки материала толщиной более 200 мм используйте газокислородный метод.
  • Для резки материала толщиной более 50 мм используйте газокислородный или гидроабразивный метод.
  • Для резки материала толщиной более 30 мм используйте плазменный, газокислородный или гидроабразивный метод.

2. Оцените свои требования к точности и качеству краев.

  • Приемлемо ли для вас качество краев, обеспечиваемое плазменной технологией? На большинстве видов производства вполне достаточно качества реза, которого можно добиться с помощью плазменной резки.
  • Приемлема ли для вас зона теплового воздействия, характерная для газокислородной, плазменной или лазерной технологии? Если нет, используйте гидроабразивную резку.

3. Подумайте, что для вас важнее: производительность или стоимость?

  • Если уровень производительности важнее, откажитесь от гидроабразивной технологии.
  • Если основной фактор — малые начальные вложения и низкая стоимость эксплуатации, обратите внимание на газокислородную резку.

Дополнительные критерии выбора

Допускают ли детали возможность резки с использованием двух, четырех или большего числа горелок? Если да, то газокислородная технология будет более эффективной, чем плазменная и лазерная. Использование нескольких плазменных горелок допустимо, однако начальные затраты на оборудование в этом случае существенно повышаются. При гидроабразивной резке можно использовать несколько режущих сопел с одним повышающим давление насосом (однако для этого придется приобрести насос с производительностью, достаточной для обслуживания нескольких головок). Традиционным ограничением лазерной резки является возможность использования только одной режущей головки, хотя волоконные лазеры поддерживают одновременную резку несколькими головками.

Читать еще:  Как разобрать станок лазерной резки для транспортировки?

Дополнительные сложности
Еще одним фактором, который способен оказать значительное влияние, является возможность резки с одновременным применением нескольких технологий для одной детали. С логической точки зрения лучше всего сочетаются гидроабразивная и плазменная или гидроабразивная и газокислородная технологии. Новая технология волоконных лазеров теперь также позволяет сочетать лазерную и плазменную или лазерную и газокислородную технологии. Преимуществом использования нескольких процессов является возможность медленной и точной резки по одним контурам при быстрой и более дешевой резке по остальным. Результат — необходимая точность деталей при более низких расходах, чем в ситуации, когда для обработки всей детали используется высокоточный процесс.

Заключение
Из-за пересекающихся диапазонов допустимой толщины листа и сходных возможностей четырех представленных технологий выбрать метод резки низкоуглеродистой стали бывает непросто. По этой причине производители и сервисные центры, которые работают со стальными изделиями и выполняют резку различных материалов, часто выбирают станки, поддерживающие не менее двух технологий резки. Иногда единственный способ подобрать оптимальный процесс для той или иной детали — попробовать несколько вариантов и сравнить результаты.

Цены на плазменную резку за 1 п.м. (с НДС)

На крупные заказы делаем скидки. Размер скидок обговаривается индивидуально в ходе обсуждения заказа.

Точная стоимость работ рассчитывается индивидуально по предоставленным чертежам и зависит от вида и толщины металла, конфигурации, длины реза и числа прожигов.

К примеру, если конфигурация изделия предполагает отдельные внутренние контуры, то к расчету длины реза добавляется стоимость прожига (пробивки) отверстий. Также удорожает стоимость работ резка высоколигированных сталей, так как для образования плазмы используется смесь инертных газов.

Черный металл

Толщина листа, ммЦена за 1п.м./ руб.
1-1,557
2-2,560
3-466
5-680
8-10120
12-14170
16-18270
20380
25440
30500

Нержавеющая сталь

Толщина листа, ммЦена за 1п.м./ руб.
1-1,582
2-2,594
3-4130
5-6185
8-20Договорная

Алюминий

Толщина листа, ммЦена за 1п.м./ руб.
1-1,582
2-2,594
3-4130
5-6185
8-20Договорная

Ещё один похожий вариант

Можно сделать и по-другому. Вначале выполняется та же работа, что и в предыдущем варианте – прочерчивается полоса, укладывается и прижимается уголок. Но здесь канавка делается несколько глубже – 4-5 мм. После того, как уголок будет снят, остаток металла можно просто доломать, а край обработать при помощи УШМ со шлифовальным диском. Однако здесь возможны небольшие ямки на кромке, что делает второй вариант более приемлемым.

Канавка вдоль направляющего уголка делается немного глубже, чем в предыдущем варианте

Стоимость эксплуатации

Стоимость эксплуатации установок складывается из стоимости

  • энергетических затрат и затрат на рабочие газы;
  • стоимости расходных комплектующих;
  • стоимости сервисного обслуживания и ремонта.
Энергетические затраты

Основными потребителями электроэнергии в лазерной и плазменной установках являются лазер (источник тока для плазмы), координатная система со стойкой управления, вытяжная система, чиллер (для охлаждения рабочего тела лазера или мощного плазмотрона).

Энергопотребление лазерных и плазменных установок может быть близко по значению или различно, что зависит от ряда факторов. Например, при резке металла одной толщины (до 5..8 мм) с одной скоростью лазером и плазмой энергопотребление установок (включая оборудование, необходимое для работы установок – компрессор, чиллер, и др.) практически одинаково.

По иному обстоит дело при высокопроизводительной лазерной резке на высокой скорости. При той же толщине металла уже понадобится лазерная установка мощностью в 3..4 раза превышающей мощность плазменного станка. При резке металла толщиной более 8 мм потребная мощность лазера возрастает в несколько раз по сравнению с плазменными установками.

Энергопотребление установок при резке тонколистового металла находится либо на одном уровне, либо с небольшим перевесом в сторону плазмы. Резка толстого металла требует уже более высоких энергозатрат от лазера. В первом приближении лазерные и плазменные установки можно отнести к одному классу энергопотребления.

Обе системы резки включают в себя источник сжатого воздуха (кислорода, азота). Лазерная резка требует более высокой степени очистки рабочего газа, чем при плазменной резке, что, в свою очередь, требует присутствия высококачественных фильтрующих элементов, сепараторов, и др. в системе подготовки газа.

Расходные элементы и комплектующие

Основными расходными комплектующими для плазменной резки являются сопло и электрод, подвергающиеся непосредственному износу в процессе работы. При интенсивной резке, в зависимости от толщины металла, комплекта сопло-электрод может хватать на 600-800 прожигов или на 5-8 часовую рабочую смену. Защитные экраны, завихрители и др. элементы плазмотрона выходят из строя, как правило, в результате неправильных алгоритмов прожига и резки или аварийных ситуаций. Замена данных комплектующих производится с помощью обычной процедуры «открутил-закрутил» в течении нескольких минут.

Понятие «расходные» комплектующие для лазера весьма условно, т.к. детали лазерного источника и режущей головки (линзы, отражающие зеркала, сопла) выходят из строя реже, чем у плазмотрона, но их поломка и замена вытекают в дорогостоящий сложный ремонт. Например, «банальная» очистка линзы должна производиться под микроскопом в стерильных условиях и специальными инструментами. Стоимость линзы в 10..30 раз выше стоимости комплекта «сопло-электрод» для плазмы, а, например, лампа накачки для мощного СО2 лазера может стоить как качественный комплектный источник плазмы.

Сервисное обслуживание и ремонт

При правильной эксплуатации источник плазмы и плазмотрон не требует каких либо сложных операций по регулировке и сервисному обслуживанию. Данные операции сводятся к продувке внутренних полостей источника тока и плазмотрона. Элементы плазмотрона легко заменяются силами эксплуатанта. При замене же каких-либо оптических деталей лазерной головки требуется сложная регулировка квалифицированным персоналом.

От чистоты поверхности металла напрямую зависит срок службы лазерной головки, напротив, при плазменной резке на поверхности допускается как ржавчина, так и масляный налет.

Читать еще:  Как сделать МАКЕТ КОРОБКИ из фанеры (ящика или шкатулки) в Corel DRAW для лазерной резки обзор генератора коробок ВИДЕОинструкция

Стоимость эксплуатации одного и того же оборудования на различных производствах может отличаться в несколько раз. На это влияет толщина основного обрабатываемого металла, время непрерывной работы, качество и своевременность технического обслуживания, правильная подготовка рабочих газов.

Резка листового металла

Листовой металл, в зависимости от его толщины, можно резать:

  • ножницами по металлу;
  • электролобзиком;
  • болгаркой.

Обо всех этих способах я расскажу по порядку.

Резка ножницами по металлу

Обычных ножниц по металлу существует 3 типа:

  • прямые;
  • изогнутые вправо;
  • изогнутые влево.

Такими ножницами можно резать лишь довольно тонкие и узкие металлические листы. Если рез должен быть прямым, то берутся, соответственно, прямые ножницы. Однако следует помнить, что использование этого инструмента сопровождается некоторой деформацией отрезаемого материала, который загибается в процессе резки.

Если необходимо разрезать какой-либо тонкий профиль, на который, как правило, монтируется гипсокартон, то сначала ножницами разрезают его бортики.

После этого профиль перегибают и выполняют окончательный рез.

Если необходимо выполнить рез листа, закругленный вправо или влево, то следует воспользоваться ножницами, закругленными в нужную сторону.

Чтобы избежать деформации листа при резке, можно воспользоваться просечными ножницами.

В ходе реза ножницы высекают узкую полоску металла по линии реза, и эта полоска постепенно выходит через верхнюю губку инструмента.

Резка электролобзиком

При резке лобзиком используется специальная режущая пилка, предназначенная для металла. Ее особенности аналогичны ранее описанным для ножовочного полотна. По этой причине лобзик выполняет рез лишь при ходе пилки снизу вверх.

С помощью лобзика можно резать листы толщиной не более 3 мм.

Резка металла болгаркой

Для резки толстых металлических прутов и листов лучше всего пользоваться болгаркой. Причем резку производят специально предназначенными для этого дисками.

Подробную информацию о том, как следует резать болгаркой, вы можете почерпнуть из статьи моего коллеги, которую можно найти вот по этой ссылке.

Разрезаемую заготовку следует надежно закрепить. Болгарку в процессе работы необходимо крепко удерживать двумя руками.

Если разрезать необходимо толстый металлический лист, то начать лучше с того, что по нему выполняется поверхностный рез, который явится своего рода разметкой.

После этого можно приступать непосредственно к отрезанию необходимой заготовки.

Итак, я изложил вам основы того, как должна производиться резка металла с использованием различных инструментов. Повторюсь, что статья является своего рода «школой молодого бойца» и адресуется начинающим домашним мастерам. Надеюсь, собранный мной материал будет интересен и полезен для них.

Тонкий луч

Сама по себе технология лазерной резки располагает к высокой точности. Лазерный луч, режущий металл, тонок в диаметре, что позволяет прорезать им виртуозно тонкие отверстия, минимально равные толщине металла.

Стабильность луча

Один из основных конкурентов технологии лазерной резки — плазменная резка — работает по схожему принципу, однако использует для резки не лазерный луч, а плазменную дугу. Точность наведения этой дуги может быть такой же высокой — однако результат всё равно будет получаться менее точным, потому что сама по себе дуга нестабильна.

А луч стабилен и прям, он попадает чётко туда, куда его направляют — и это также обуславливает высочайшую точность лазерной резки.

Компьютерное наведение

Однако момент с точностью наведения, конечно, тоже важен. Серьезные лазерные станки — такие, как на производстве «Металл‑Кейс» — во время резки полностью управляются компьютером, действующим в соответствии с идеально рассчитанной программой действий.

Управляющий компьютер также добавляет этому производственному этапу точности, так как способен наводить луч точнее и стабильнее, чем это смог бы сделать человек. Помимо точности исполнения отдельного изделия это также влияет на единообразие и точное соответствие всех деталей партии исходному проекту.

Читайте также:

Отсутствие деформаций

Дополнительным преимуществом лазерной резки в плане точности является скорость работы с конкретным участком. Дело здесь не столько в том, что это позволяет выполнять заказы быстро — откровенно говоря, пробивкой получилось бы всё равно значительно быстрее, потому что пробивной станок за один удар делает целое отверстие или даже целую деталь — а лазерный луч должен прорезать каждую линию по отдельности.

Однако каждый отдельный участок металла при лазерной резке быстро нагревается и быстро остывает — а это сказывается на практически полном отсутствии возможности для термических деформаций. Металл в зоне резки нагрет, расплавлен и выдут из отверстия струей сжатого газа — а окружающий металл еще совершенно не успел нагреться до температуры деформаций.

Сказывается на этом, кстати, и уже упомянутый поток сжатого газа — он не только выдувает расплавленный металл из разреза, но и охлаждает края. Плюс, конечно, может оказывать дополнительные воздействия в зависимости от выбранного газа — ускорять резку, как кислород ускоряет резку черной стали, или защищать от образования портящих деталь химических соединений, как азот защищает нержавейку или аргон защищает титан.

Плюс к отсутствию термических деформаций — отсутствие механических деформаций и царапин. Они просто невозможны на этапе лазерной резки, если технология соблюдается. Потому что лист металла не приходится жестко фиксировать, в этом просто нет необходимости. Он просто свободно лежит на станине, а луч режет.

Причины заказать у нас

Мы знаем, что вы хотите получить достойный результат, и не потратить при этом много денег. Вы по адресу – сюда уже обратились десятки частных и крупных клиентов, и все они оценили преимущества компании:

  • Ответственный и профессиональный подход к работе.
  • Минимальные затраты времени на оказание услуги.
  • Гарантия соответствия результата ожиданием клиента.
  • Самые лояльные ограничения на параметры металла.
  • Приемлемые цены, скидки для постоянных клиентов.
  • Делаем заказы на работу с партиями любого объема.

Только у нас вы найдете лучшие условия на услугу резки листового металла в Москве и Московской области. Оставьте заявку прямо сейчас – рассчитаем окончательную стоимость резки и приступим к выполнению работы!

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector