Rosnerud-spb.ru

Ремонт СПБ
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Флюс для пайки феном паяльной станцией

Записки мастера. инструмент и оборудование. Часть 2

Макс Любин

А вот и вторая часть про инструмент, который вам потребуется для ремонта электроники.

Паять или не паять, вот в чем вопрос

В предыдущей статье (Записки мастера. Инструмент. 1 часть) мы рассмотрели инструмент, необходимый для ремонта без пайки. Многие, для кого ремонт просто хобби, ограничиваются модульным ремонтом и не заморачиваются паяльными делами, так как в отличии от модульного ремонта, паять не так просто, как крутить винты, и при этом не всегда целесообразно с экономической точки зрения — довольно сложно объяснить человеку, почему перепаять какой-то элемент на плате может стоить столько же, сколько поменять дисплей на его телефоне. При этом, окунувшись в эту сферу с головой, отметил для себя одну печальную тенденцию – упрощение подхода к ремонту, падение квалификации среднестатистического мастера и скатывание от компонентного ремонта к модульному. Мастеров крупных сервисных центров тоже можно понять, у них обычно есть довольно жесткие планы по количеству отремонтированных устройств, не выполнив которые, они рискуют не получить премию, либо получить куда меньшую зарплату. А еще, есть проблема переизбытка устройств на ремонт. Мастерские переполнены неисправными устройствами, которые необходимо починить. Из-за этого, мастеру становится гораздо выгоднее потратить 15 минут и поменять целиком модуль, на котором находится неисправный элемент, вместо того, чтобы потерять 30-40 минут, занимаясь заменой этого самого неисправного элемента.

Рис. 1. Изображение взято с сайта https://hsto.org/

Немаловажную роль в возникновении подобной ситуации сыграло и наличие легкого доступа к большому количеству запчастей из «поднебесной».

С одной стороны, это неплохо, ведь если есть модуль, который можно довольно легко заменить, можно не заморачиваться с пайкой. С другой же стороны, проблемой может стать отсутствие нужного модуля, а также отсутствие мастера, который сможет найти донорскую микросхему и заменить ее.

Поэтому, я считаю, что иметь хотя бы базовые навыки работы паяльником весьма полезно.

Но для начала, давайте попробуем разобраться, какие инструменты и материалы нам могут понадобиться для этого.

Инструмент и материалы

Начнем, пожалуй, с основы основ – паяльника.

Паяльники бывают разной мощности. От мощности паяльника зависит до какой температуры он может разогреваться. Для начинающих я рекомендую паяльник мощностью 25 Ватт. Работая таким паяльником, вы сведете к минимуму риск перегреть микросхему, а значит, сжечь ее.

Кроме мощности, у паяльника может отличаться материал и толщина жала.

Жало у подавляющего большинства паяльников сменное. Чем мельче деталь, которую вам предстоит паять, тем тоньше должно быть жало. Для начала рекомендую не увлекаться ювелирными работами над миниатюрными деталями, и начать с крупных деталей, чтобы набить руку. Кроме размера, жало может быть выполнено из разных материалов. Классическое медное жало (используется очень давно) и жало и никелевым покрытием (больше подходит для паяльников с регулируемой температурой и для паяльных станций).

Бывают виды паяльных работ, которые просто невозможно выполнить с помощью паяльника. И тут на помощь придет так называемый паяльный фен.

По принципу работы, он практически не отличается от обычного бытового фена. Разница только в температуре и интенсивности воздушного потока, которую он может обеспечить. Применяется он для самых разнообразных видов работ, начиная от непосредственно, пайки микросхем и заканчивая прогревом различных поверхностей до, или после склейки. Такой фен будет стоить ощутимо дороже паяльника, поэтому, если вы всё же решили стать мастером паяльных дел, то мой вам совет, покупать сразу паяльную станцию оснащенную и паяльником и феном.

Паяльные станции бывают разной мощности и функционала, а значит и стоимости. Стоимость подобных приборов колеблется в довольно широких пределах. Простую паяльную станцию без фена можно купить за 1500-1800 руб. Есть экземпляры и за 15000-20000 руб.

Кроме всего прочего, существуют и инфракрасные паяльные станции, о которых не вижу смысла говорить в рамках домашнего ремонта в качестве хобби, ибо стоимость такого оборудования часто переваливает за 50 тыс.руб.

Несомненным удобством паяльной станции является возможность регулировки температуры фена и паяльника в довольно широких пределах.

Расходные материалы

Материалы, которые вам потребуются для пайки, отличаются большим разнообразием.

Во-первых, вам потребуется припой.

В большинстве случаев, в качестве припоя используют свинцово-оловянные сплавы. Например, самый распространенный вид припоя — ПОС-61, что обозначает П – припой, О – оловянный, С – свинцовый, 61 – % содержания олова.

Припой также бывает разный. Основное отличие – температура плавления.

В электротехнике часто используются детали, чувствительные к перегреву, для которых оправдано использование припоев с температурой плавления, исключающей повреждение элемента. Наиболее часто используемый припой в таких случаях, это сплав Розе. Его температура плавления всего 94˚С.

Во-вторых, флюс.

Как говорит Википедия, флюс — вещества (чаще смесь) органического и неорганического происхождения, предназначенные для удаления оксидов с поверхности под пайку, снижения поверхностного натяжения, улучшения растекания жидкого припоя и/или защиты от действия окружающей среды. Или, если говорить более понятным языком, средство, предназначенное для того, чтобы припой лучше лип к детали.

Самый известный флюс – канифоль. У канифоли есть много недостатков, среди которых один из главных — агрессивность по отношению к металлическим элементам и способность накапливать влагу, а значит риск провоцирования короткого замыкания, в случае, если вы не очистите деталь после пайки.

Существует большое количество видов флюсов. Флюсы из различных материалов, флюсы для разных типов металлов, флюсы для разных температур пайки.

В-третьих, очиститель от флюса (flux-off). Средство, с помощью которого можно очистить плату после пайки с использованием некоторых видов флюсов.

Чаще всего поставляется в виде аэрозолей. Стоит около 300-400 руб.

Токопроводящий клей

Суть данного вещества отражена в его названии. С помощью этого состава можно склеивать токопроводящие элементы без пайки. Наиболее частое применение – приклеивание тонких шлейфов, паять которые было бы очень сложно или невозможно из-за особенностей расположения. Но, на моей практике, подобный материал мне пригодился только один раз, когда я восстанавливал шлейф дисплея на Nexus 5, отклеившийся от места соединения с матрицей.

Думаю, тема припоев, флюсов, сопутствующих материалов и способов их применения, достойна отдельной статьи, поэтому предлагаю подробно разобрать этот вопрос в следующей, третьей части статьи, которая будет посвящена материалам для пайки и методам и способам их применения. Иными словами будем учиться паять.

Еще инструмент и оборудование

Другим, весьма полезным и очень важным прибором (о котором несколько раз упоминали в комментариях к предыдущей статье) является регулируемый источник постоянного тока, мастерами чаще всего называемый просто «блок питания».

Нужен этот прибор для разнообразных задач. Это и подзарядка сильно севших аккумуляторов напрямую, когда штатный зарядник не в состоянии «толкнуть» батарею, чтобы она вышла из состояния глубокого разряда. И просто возможность запустить устройство без батареи, для проверки, либо теста.

Основной параметр, это диапазон напряжения и тока, который может выдать устройство, а также количество каналов. Примерная стоимость одноканального блока с силой тока до 2 А, и напряжением до 15 В, составляет примерно 1200-1600 руб. Стоимость более совершенных приборов может доходить и до 20-30 тысяч рублей. Однако, для домашнего использования подойдет и самый простой вариант.

Мультметр

Википедия: Мультиметр (от англ. multimeter), тестер (от англ. test — испытание), авометр (от ампервольтомметр) — комбинированный электроизмерительный прибор, объединяющий в себе несколько функций.

В минимальном наборе включает функции вольтметра, амперметра и омметра. Иногда выполняется мультиметр в виде токоизмерительных клещей. Существуют цифровые и аналоговые мультиметры.

Иными словами, это тот самый прибор, который позволит найти неисправность в электрической цепи. С помощью мультиметра можно найти как обрыв в цепи, так и короткое замыкание, а значит, зная схему устройства, выявить виновника неисправности, чтобы его заменить.

Мультиметры бывают различной точности, которая зависит от разрядности прибора. Например, у наиболее распространенных портативных вольтметров с разрядностью 3.5 точность будет около 1%.

Стоимость недорогого портативного мультметра составляет в среднем 350-450 руб.

Третья рука

По сути, это крепление, которое позволяет зафиксировать ремонтируемое устройство в необходимом положении, для удобства ремонта. Чаще всего представлено в виде небольших зажимов на подставке с увеличительным стеклом или без. Бывает оснащено или не оснащено своей подсветкой. Очень полезное приспособление.

Бинокуляр (микроскоп)

Один из наиболее дорогих приборов в моем арсенале.

Незаменимый помощник в случае, когда требуются работы над очень мелкими деталями — пайка шлейфов, мелких соединений и т.д. На самом деле, большинство паяльных работ я выполняю под микроскопом. Это существенно облегчает процесс пайки и контроль качества соединения.

Вытяжка

Если есть возможность оснастить свое рабочее место вытяжкой, то настоятельно советую это сделать. Самый простой способ, это купить гофрированную трубу, закрепить один ее конец над местом проведения паяльным работ, другой конец вывести в вентиляцию. А внутрь установить кулер подходящих размеров. Это спасет ваши легкие и глаза от дыма и испарений, которые при всем желании не получится назвать полезными.

Рабочий ноутбук или стационарный компьютер

Рекомендую использовать именно отдельный компьютер в качестве рабочего, для прошивки и программного ремонта устройств. Отдельный, потому что частое скачивание и установка специального программного обеспечения и прошивок, зачастую с неизвестных ресурсов, не идут на пользу компьютеру, так как рано или поздно вы будете делать что-то «очень срочно», потеряете бдительность и найдете свой вирус. Так вот, заразить отдельный компьютер не так страшно, как основной.

Читать еще:  Какие бывают припои для пайки медных труб

Заключение

Вот, пожалуй, и всё, что я хотел рассказать относительно инструмента, который требуется мне в моем ремонтном хобби.Конечно, это далеко не всё, что может потребоваться мастеру, но не следует забывать. что речь идет про домашний ремонт, в качестве хобби, а не источника заработка. Можно, конечно, помечтать и о инфракрасной паяльной станции, и о стационарном мультиметре с осциллографом, и много еще о чем. Но будет ли такая покупка оправданной? Однозначно да можно ответить только если вы собираетесь сделать ремонт основным источником дохода. В остальных случаях, это ненужные траты. Как показывает практика и личный опыт, различным инструментом начинаешь обрастать постепенно и не торопясь, когда появляется возможность помноженная на насущную необходимость, а не только желание это оборудование иметь. Поэтому мой совет начинающим мастерам — не торопитесь покупать железки. Попробуйте, и поймете что вам нужно здесь и сейчас, а без чего можно и обойтись на первых порах.

В следующей статье подробно поговорим о материалах и сплавах, используемых при пайке (где, что, и зачем можно использовать), а также рассмотрим несколько приемов этой самой пайки на практических примерах.

По традиции, буду рад любой критике и советам в комментариях.

Особенности пайки

Сейчас развитие электроники идет по пути все более плотного монтажа компонентов на печатной плате. Помимо очевидных достоинств, прогресс приводит к трудностям ремонта из-за очень компактных размеров. Это очень затрудняет работу паяльником, и поэтому для монтажа планарных деталей, микросхем и смд-конденсаторов обычно применяется пайка с помощью специального фена.

Термофен – это отдельный элемент паяльной станции. Он создает узкий поток воздуха, нагретого до температуры 400–500 градусов и двигающегося с определенной скоростью.

Поэтому при работе с ним нужно учитывать ряд особенностей.

  • Температуру нагрева следует регулировать в зависимости от выполняемой работы, размера компонента и вида припоя.
  • Скорость потока воздуха должна быть наименьшей, иначе при работе фен может сдуть соседние мелкие компоненты. Но от нее зависит скорость прогрева, поэтому ее нужно регулировать индивидуально.
  • Фен комплектуется несколькими насадками, которые регулируют мощность воздушного потока. Правило простое – для мелких деталей лучше выбирать узкую насадку.
  • При нагреве припой, закрепляющий соседние компоненты, может размягчиться. Тогда эти детали сдвинутся, нарушится контакт между ними, и плата будет работать некорректно. Во избежание этого их нужно экранировать фольгой или термоскотчем, чтобы они не нагрелись.
  • Фен нужно держать строго перпендикулярно поверхности платы.

Исходя из этого, к работе нужно подойти максимально ответственно.

Базовые правила при работе с паяльной станцией

В целом, использование такого оборудования не выглядит сложнее, чем работа обычным паяльником. Наоборот, станция обеспечивает удобство и комфорт пайки. Можно выявить некоторые соответствия между конкретными видами устройств и видами проводимых работ:

  • Контактная станция позволяет осуществлять навесной монтаж и работать с маленькими SMD-деталями. В оборудовании можно менять жало для точности процедуры и аккуратно регулировать температуру нагрева этой насадки.
  • Термовоздушная паяльная станция тоже подойдет для навесного монтажа, но основной ее профиль работы — SMD-монтаж. Отдельные выводы компонента при этом нет нужды прогревать: деталь сразу вся нагревается, и элемент без проблем удаляется.
  • Смешанное оборудование — это отличное решение для комплексных работ. С феном и паяльником можно приобретать станции для ремонтных центров и сервисов технического обслуживания.
  • Инфракрасная станция нужна для сложных ремонтных работ. Обычно речь идет о восстановлении дорогостоящих устройств. К примеру, с таким оборудованием можно выпаять чип с материнской платы, при этом не нанося никакого вреда ни элементу, ни самой поверхности.

Существуют также элементарные правила работы в процессе пайки. Например, нельзя выставлять наибольшую температуру нагрева без особой необходимости. Если такое сделать в контактной паяльной станции, жало перегреется и придёт в негодность, как и нагревательный элемент.

У термофена в результате перегрева также повредятся нагревательные детали.

Мастера советуют также использовать качественный флюс. Это актуально при работе с любым видом станции, потому что флюс низкого качества медленно разрушает дорогое жало и вредит здоровью работника. Не нужно экономить на флюсе, и лучше использовать его всегда чуть больше, чем требуется в данный момент. То же самое касается и припоя: с ним лучше не жадничать.

Без острой необходимости также не стоит устанавливать максимальную мощность на термофене. Дело в том, что сильный воздушный поток способен сдуть с платы важные элементы, особенно если они маленькие по размеру и легкие по весу.

Некоторые из радиолюбителей занимаются самостоятельной модификацией своих устройств. Однако если это ваша первая паяльная станция и вы еще плохо разбираетесь в ее технической начинке и в приборах вообще, лучше воздержаться от подобных процедур, чтобы не навредить оборудованию.

Выводы

Самый главный вывод, который можно сделать после изучения паяльной станции, — работа с таким оборудованием приятная, удобная и понятная. Устройство обеспечивает безопасность и комфорт пайки, если соблюдать минимальные правила осторожной работы. Помните всегда о том, что максимальная температура нагрева негативно сказывается на состоянии элементов и сокращает их эксплутационный срок.

Экстремальный режим работы паяльной станции никак не влияет на расширение ее функционала, а только лишь перегружает оборудование.

Инструменты и материалы

Несколько слов про необходимые для этой цели инструменты и расходные материалы. Прежде всего это пинцет, острая иголка или шило, кусачки, припой, очень полезен бывает шприц с достаточно толстой иголкой для нанесения флюса. Поскольку сами детали очень мелкие, то обойтись без увеличительного стекла тоже бывает очень проблематично. Еще потребуется флюс жидкий, желательно нейтральный безотмывочный. На крайний случай подойдет и спиртовой раствор канифоли, но лучше все же воспользоваться специализированным флюсом, благо выбор их сейчас в продаже довольно широкий.

В любительских условиях удобнее всего такие детали паять при помощи специального паяльного фена или по другому — термовоздушной паяльной станцией. Выбор их сейчас в продаже довольно велик и цены, благодаря нашим китайским друзьям, тоже очень демократичные и доступны большинству радиолюбителей. Вот например такой образчик китайского производства с непроизносимым названием. Я такой станцией пользуюсь уже третий год. Пока полет нормальный.

Ну и конечно же, понадобится паяльник с тонким жалом. Лучше если это жало будет выполнено по технологии «Микроволна» разработанной немецкой фирмой Ersa. Оно отличается от обычного жала тем, что имеет небольшое углубление в котором скапливается капелька припоя. Такое жало делает меньше залипов при пайке близко расположенных выводов и дорожек. Настоятельно рекомендую найти и воспользоваться. Но если нет такого чудо-жала, то подойдет паяльник с обычным тонким наконечником.

В заводских условиях пайка SMD деталей производится групповым методом при помощи паяльной пасты. На подготовленную печатную плату на контактные площадки наносится тонкий слой специальной паяльной пасты. Делается это как правило методом шелкографии. Паяльная паста представляет собой мелкий порошок из припоя, перемешанный с флюсом. По консистенции он напоминает зубную пасту.

После нанесения паяльной пасты, робот раскладывает в нужные места необходимые элементы. Паяльная паста достаточно липкая, чтобы удержать детали. Потом плату загружают в печку и нагревают до температуры чуть выше температуры плавления припоя. Флюс испаряется, припой расплавляется и детали оказываются припаянными на свое место. Остается только дождаться охлаждения платы.

Вот эту технологию можно попробовать повторить в домашних условиях. Такую паяльную пасту можно приобрести в фирмах, занимающихся ремонтом сотовых телефонов. В магазинах торгующих радиодеталями, она тоже сейчас как правило есть в ассортименте, наряду с обычным припоем. В качестве дозатора для пасты я воспользовался тонкой иглой. Конечно это не так аккуратно, как делает к примеру фирма Asus когда изготовляет свои материнские платы, но тут уж как смог. Будет лучше, если эту паяльную пасту набрать в шприц и через иглу аккуратно выдавливать на контактные площадки. На фото видно, что я несколько переборщил плюхнув слишком много пасты, особенно слева.

Посмотрим, что из этого получится. На смазанные пастой контактные площадки укладываем детали. В данном случае это резисторы и конденсаторы. Вот тут пригодится тонкий пинцет. Удобнее, на мой взгляд, пользоваться пинцетом с загнутыми ножками.

Вместо пинцета некоторые пользуются зубочисткой, кончик которой для липкости чуть намазан флюсом. Тут полная свобода — кому как удобнее.

После того как детали заняли свое положение, можно начинать нагрев горячим воздухом. Температура плавления припоя (Sn 63%, Pb 35%, Ag 2%) составляет 178с*. Температуру горячего воздуха я выставил в 250с* и с расстояния в десяток сантиметров начинаю прогревать плату, постепенно опуская наконечник фена все ниже. Осторожнее с напором воздуха — если он будет очень сильным, то он просто сдует детали с платы. По мере прогрева, флюс начнет испаряться, а припой из темно-серого цвета начнет светлеть и в конце концов расплавится, растечется и станет блестящим. Примерно так как видно на следующем снимке.

После того как припой расплавился, наконечник фена медленно отводим подальше от платы, давая ей постепенно остыть. Вот что получилось у меня. По большим капелькам припоя у торцов элементов видно где я положил пасты слишком много, а где пожадничал.

Паяльная паста, вообще говоря, может оказаться достаточно дефицитной и дорогой. Если ее нет в наличии, то можно попробовать обойтись и без нее. Как это сделать рассмотрим на примере пайки микросхемы. Для начала все контактные площадки необходимо тщательно и толстым слоем облудить.

Читать еще:  Выбор паяльника для пайки проводов; на что обратить внимание

На фото, надеюсь видно, что припой на контактных площадках лежит такой невысокой горочкой. Главное чтобы он был распределен равномерно и его количество на всех площадках было одинаково. После этого все контактные площадки смачиваем флюсом и даем некоторое время подсохнуть, чтобы он стал более густым и липким и детали к нему прилипали. Аккуратно помещаем микросхему на предназначенное ей место. Тщательно совмещаем выводы микросхемы с контактными площадками.

Рядом с микросхемой я поместил несколько пассивных компонентов керамические и электролитический конденсаторы. Чтобы детали не сдувались напором воздуха нагревать начинаем свысока. Торопиться здесь не надо. Если большую сдуть достаточно сложно, то мелкие резисторы и конденсаторы запросто разлетаются кто куда.

Вот что получилось в результате. На фото видно, что конденсаторы припаялись как положено, а вот некоторые ножки микросхемы (24, 25 и 22 например) висят в воздухе. Проблема может быть или в неравномерном нанесении припоя на контактные площадки или в недостаточном количестве или качестве флюса. Исправить положение можно обычным паяльником с тонким жалом, аккуратно пропаяв подозрительные ножки. Чтобы заметить такие дефекты пайки необходимо увеличительное стекло.

Паяльная станция с горячим воздухом — это хорошо, скажете вы, но как быть тем, у кого ее нет, а есть только паяльник? При должной степени аккуратности SMD элементы можно припаивать и обычным паяльником. Чтобы проиллюстрировать эту возможность припаяем резисторы и пару микросхем без помощи фена одним только паяльником. Начнем с резистора. На предварительно облуженные и смоченные флюсом контактные площадки устанавливаем резистор. Чтобы он при пайке не сдвинулся с места и не прилип к жалу паяльника, его необходимо в момент пайки прижать к плате иголкой.

Потом достаточно прикоснуться жалом паяльника к торцу детали и контактной площадке и деталь с одной стороны окажется припаянной. С другой стороны припаиваем аналогично. Припоя на жале паяльника должно быть минимальное количество, иначе может получиться залипуха.

Вот что у меня получилось с пайкой резистора.

Качество не очень, но контакт надежный. Качество страдает из за того, что трудно одной рукой фиксировать иголкой резистор, второй рукой держать паяльник, а третьей рукой фотографировать.

Транзисторы и микросхемы стабилизаторов припаиваются аналогично. Я сначала припаиваю к плате теплоотвод мощного транзистора. Тут припоя не жалею. Капелька припоя должна затечь под основание транзистора и обеспечить не только надежный электрический контакт, но и надежный тепловой контакт между основанием транзистора и платой, которая играет роль радиатора.

Во время пайки можно иголкой слегка пошевелить транзистор, чтобы убедиться что весь припой под основанием расплавился и транзистор как бы плавает на капельке припоя. К тому же лишний припой из под основания при этом выдавится наружу, улучшив тепловой контакт. Вот так выглядит припаянная микросхема интегрального стабилизатора на плате.

Теперь надо перейти к более сложной задаче — пайке микросхемы. Первым делом, опять производим точное позиционирование ее на контактных площадках. Потом слегка «прихватываем» один из крайних выводов.

После этого нужно снова проверить правильность совпадения ножек микросхемы и контактных площадок. После этого таким же образом прихватываем остальные крайние выводы.

Теперь микросхема никуда с платы не денется. Осторожно, по одной припаиваем все остальные выводы, стараясь не посадить перемычку между ножками микросхемы.

Вот тут то нам очень пригодится жало «микроволна» о котором я упоминал вначале. С его помощью можно производить пайку многовыводных микросхем, просто проводя жалом вдоль выводов. Залипов практически не бывает и на пайку одной стороны с полусотней выводов с шагом 0,5 мм уходит всего минута. Если же такого волшебного жала у вас нет, то просто старайтесь делать все как можно аккуратнее.

Что же делать, если несколько ножек микросхемы оказались залиты одной каплей припоя и устранить этот залип паяльником не удается?

Тут на помощь придет кусочек оплетки от экранированного кабеля. Оплетку пропитываем флюсом. Затем прикладываем ее к заляпухе и нагреваем паяльником.

Оплетка как губка впитает в себя лишний припой и освободит от замыкания ножки микросхемы. Видно, что на выводах остался минимум припоя, который равномерно залил ножки микросхемы.

Надеюсь, я не утомил вас своей писаниной, и не сильно расстроил качеством фотографий и полученных результатов пайки. Может кому-нибудь этот материал окажется полезным. Удачи!

С уважением, Тимошкин Александр (TANk)

8. Бура для пайки


На восьмом месте расположилась Бура, она же тетраборат натрия, представляет собой соль борной кислоты в виде белого порошка . Буру часто смешивают с борной кислотой и водой, чтобы получить жидкий активный флюс.

применяется при высокой температуре 700 — 900 градусов, то есть можно паять горелкой.

этот активный флюс нужно смывать обязательно.

Что паять: золото, серебро, медь, латунь, чугун, сталь.

Чем смывать: удалять механически или же так: борный флюс смывается лимонной кислотой — лимонная кислота смывается водой — воду хорошо вымывает спирт.

Возможность собрать своими руками

Как сделать паяльную станцию? Какие компоненты паяльной станции можно сделать своими руками? Для ремонта или изготовления аппаратуры на основе микропроцессоров чаще всего нужна пара устройств:

  • фен, подающий нагретый воздух;
  • инфракрасный тепловой излучатель;

Выходное сопло сделать из термостойкого кольца. Мощность необходима около 500 ватт. В качестве компрессора можно использовать небольшой вентилятор. Для регулирования температуры воздуха необходимо установить термопару.

Часто для ремонта процессора компьютера нужен инфракрасный паяльник. Он состоит из таких частей: нижний нагреватель, верхний нагреватель, штатив и блок управления.

Нагреватель можно сделать из нихромовой спирали или галогеновой лампы. Нижний и верхний блоки – стальные коробки. Для контроля температуры используют две термопары – на корпусе процессора и на поверхности материнской платы.

Таким образом, паяльная станция – это хороший помощник, как домашнему мастеру, так и профессионалу.

Самодельное паяльное оборудование

Самое простое паяльное оборудование данного вида можно не только приобрести, но и собрать самостоятельно. Такой вариант позволяет не только сэкономить существенную сумму денег, но и приобрести знания о том, что такое паяльная станция, как она устроена изнутри, понять принцип ее работы.

Необходимый и достаточный набор оборудования и расходных материалов, для выполнения самостоятельных ремонтов материнских плат телефонов, планшетов и ноутбуков.

Паяльник

Термовоздушная паяльная станция

Лабораторный блок питания

Силиконовый жаростойкий коврик

Оплетка для удаления припоя 1,5 и 2,0 мм

Пайка для начинающего мастера – увлекательный процесс. Самостоятельное освоение которого потребует не только значительных материальных, а и финансовых вложений. Понятно, что опыт приходит с практикой. И чем больше этой самой практики, тем более профессиональным становится мастер по пайке. Но есть одно но – начинать лучше под руководством опытных мастеров. Которые имея большой бэкграунд, готовы поделиться знаниями и опытом с другими.

Случай, когда требуется заменить BGA элемент, является более общим, а потому его и рассмотрим. Первое, что нужно сделать- это оценить, не будут ли повреждены близко расположенные элементы потоком горячего воздуха. Микросхемы, залитые компаундом, элементы, имеющие пластиковые детали (микропереключатели, SIM-ридеры) необходимо закрыть фольгой для сведения к минимуму теплового воздействия. Если есть близкорасположенные микробатарейки, микроаккумуляторы, их лучше всего демонтировать, а затем поставить на место при помощи паяльника. Приняв необходимые меры предосторожности, располагаем плату на столе так, чтобы демонтируемый BGA- элемент легко было поднять пинцетом, когда припой расплавится. Имеется в виду, что для захвата пинцетом должно быть необходимое пространство и пинцет при захвате должен располагаться в руке удобно и естественно, иначе очень высока вероятность сдвинуть соседние элементы, так как припой, закрепляющий их, будет тоже расплавлен. Лучше всего плату надежно закрепить в горизонтальном положении и повернуть ее в горизонтальной плоскости под удобным углом. Затем начинаем греть элемент феном, который держим в левой руке, периодически пытаясь приподнять элемент пинцетом (примерно через каждые 30 секунд). Время нагрева сильно зависит от условий в помещении: температуры воздуха, наличия сквозняков, открытых форточек и т.д. Если элемент приподнялся с одного края, то насильно отдирать его нельзя, а нужно отпустить и еще погреть 15-30 секунд. Прикосновение холодным пинцетом сильно остужает элемент, это тоже нужно иметь в виду. Неплохо во время нагрева держать пинцет рядом со снимаемым элементом, для подогрева пинцета. После снятия элемента дальнейшие операции лучше проводить с еще горячей платой. (Если при прогреве элемент подпрыгнул, в буквальном смысле, то это свидетельствует о расслоении печатной платы в результате заводского дефекта. Такая плата ремонту не подлежит. ) Когда микросхема снята, необходимо удалить лишний припой с платы. Для этого наносим пастообразный флюс и собираем припой паяльником, периодически удаляя припой с жала. Необходимо учитывать, что большие «горки» припоя затруднят позиционирование нового элемента. А если пятаки(контакты на плате) будут не облужены, то получившийся контакт может быть не надежен. Следует обратить внимание на целостность пятаков. Если отвалились пустые пятаки, то ничего страшного, если отвалился пятак, имеющий контакт, то можно попробовать облудить металлизацию в отверстии и сформировать капельку припоя на месте пятака. Затем удаляем грязь и остатки флюса с платы. Глядя в микроскоп, необходимо проконтролировать результат и исправить недостатки. Недостатки могут быть следующего характера: плохо облуженные пятаки, на пятаках слишком много припоя, замыкания между пятаками, повреждения паяльной маски, поврежденные пятаки, отслоившиеся проводники. Если дефект устранить не удается, то изделие неремонтопригодно. Затем наносим пастообразный флюс. Флюс необходимо наносить на всю поверхность под элементом, даже если контакты расположены только по периметру. Иначе воздух из пустоты в середине при нагреве расширится и значительно сместит элемент. Важно количество флюса. Его должно быть достаточно для смачивания нижней поверхности элемента, но если элемент будет плавать в «луже», то его будет трудно позиционировать. Я предпочитаю флюс, нанесенный на плату, прогреть феном до жидкого состояния, перед помещением BGA-элемента на плату. Так как при пайке он все равно нагреется и элемент может значительно сместиться.

Читать еще:  Популярные флюсы для пайки

Рис.1 Расположение выводов по периметру.

Область выводов закрашена серым.

Извлекаем элемент из контейнера и ставим на плату, соблюдая ориентацию «ключа». Точное позиционирование выполняем под микроскопом по маркерам при помощи монтажного шила. При позиционировании следует учитывать шаг между контактами. Не обязательно добиваться идеального расположения, достаточно небольшого соприкосновения между «шарами» припоя на BGA-микросхеме и пятаками на плате. Оценивать точность позиционирования необходимо с учетом шага контактов и их размера.

Рис.2 Правильное позиционирование.

Необходимое выравнивание произойдет за счет эффекта смачивания при расплавлении припоя.

На Рис.1 приведен пример правильного позиционирования микросхемы на плате, на Рис.3 и Рис.4 приведены примеры неправильного позиционирования элемента на плате. На Рис.3 «шары» припоя одновременно соприкасаются с двумя пятаками, при этом при расплавлении припоя микросхема может встать неправильно, или могут возникнуть замыкания. На Рис.4 шары совсем не соприкасаются с пятаками, при этом сколько бы мы ни грели элемент, его пайка не произойдет. Обычно имеется взаимосвязь между линейными размерами маркера и шагом выводов на элементе. Если имеются сложности с позиционированием, то иногда имеет смысл прогреть примерно установленный элемент феном, для выпаривания флюса. После выпаривания флюс будет вязким и элемент можно установить более точно.

Рис.3 Неправильная установка. Неоднозначное соприкосновение «шаров» и пятаков.
Рис.4 Неправильная установка. Нет соприкосновения «шаров» и пятаков.

Для пайки необходимо отрегулировать расход воздуха под конкретную форсунку. Элемент не должно сдувать. Если элемент сдувает, то подачу воздуха нужно уменьшить. Температура на индикаторе паяльной станции зачастую не соответствует температуре воздуха, выходящего из форсунки. Нормально, если индикатор будет показывать 500-550 гр.С. Предварительно прогревают элемент, для этого нужно держать фен на расстоянии 2-3 см; через 30-60 секунд приближают фен на расстояние 5-10 мм от поверхности элемента для расплавления припоя. Плавными движениями прогревают поверхность элемента и пространство непосредственно рядом с ним. Примерно через 60-180 сек. элемент заметно осядет и выровняется по маркерам (оседание видно, если смотреть сбоку), что свидетельствует о расплавлении припоя. После оседания элемент следует погреть 10-15 секунд. Большая микросхема может оседать частями, сначала с одной стороны. В этом случае нужно продолжать греть всю поверхность, обращая особое внимание на непропаянную часть. После этого нужно дать остыть плате в течении 15-60 секунд, жидкостью для снятия флюса, снять избытки флюса и просушить плату. Качество пайки можно контролировать по следующим признакам: расположение элемента относительно маркеров; лучше сравнивать с такой же платой или запомнить расположение элемента, маркеры не всегда расположены идеально ровно и может возникать впечатление, что элемент не совсем правильно встал на место, глядя на элемент сбоку, можно оценить, на всех ли контактах образовалось качественное соединение; если рядом с BGA-элементом расположен крупногабаритный элемент, то с одной из сторон пайка может быть затруднена вследствии неудачного распределения воздушных потоков, и элемент с одной из сторон не пропаяется. Глядя при помощи микроскопа на форму капель припоя, можно оценить качество пайки. Обратите внимание. Если при прогреве элемент подпрыгнул, то это свидетельствует о расслоении печатной платы в результате заводского дефекта. Такое изделие ремонту не подлежит. Ничего страшного, если элемент с небольшим количеством выводов встал криво, не на место. Как правило, возможно его аккуратно поднять и припаять правильно без стандартной накатки шаров. При определенном навыке возможно снять и вновь поставить BGA-элемент и с очень большим количеством выводов и очень мелким шагом выводов, без накатки шаров. Некоторые жидкости для снятия флюса могут вызывать сбои при работе телефона. Поэтому плату после промывки необходимо хорошо просушивать в течении 3-4 часов. Примерный паяльный профиль для паяльной станции типа Martin: 240 гр.—80 сек. 320 гр. —110 сек. Повторная пайка снятого BGA-элемента возможна, но она в данной статье не рассматривается, так как применяется весьма редко. Паяльная маска- это изолирующий состав, которым покрывается печатная плата для предотвращения повреждений проводникв и коротких замыканий между проводниками. Маркеры – это метки на печатной плате, показывающие, как правильно должен стоять элемент; зачастую элемент может быть в корпусах разного размера и на одном посадочном месте , в этом случае на плате будет много маркеров. Если видны вспучивания платы под микроскопом, то это свидетельствует о заводском дефекте; такая плата ремонту не подлежит. Как правило, удается оценить подачу воздуха феном, направляя поток на руку, с расстояния 20-30 см, на время 0,5-1 секунду. Данный прием небезопасен и требует определенного опыта.

Замена чипа BGA своими руками в домашних условиях

Итак, в распоряжении домашнего мастера имеется материнская плата ноутбука, где в процессе диагностики обнаружена неисправная микросхема BGA поверхностного монтажа, в частности, чип одного из мостов компьютерной платы. Требуется демонтировать BGA микросхему поверхностного монтажа, а вместо демонтированного чипа необходимо установить другой – исправный компонент.

Процесс замены неисправного чипа поверхностного монтажа на материнской плате ноутбука. Потребуется информация по извлечению платы из корпуса аппарата

Предварительно материнская плата вынимается из корпуса ноутбука, для чего следует обратиться к сервисной инструкции конкретного производителя планшетных компьютеров. В каждом отдельном случае процедура демонтажа материнской платы может кардинально отличаться.

Подготовка материнской платы к ремонту

Извлечённая печатная плата ноутбука устанавливается над инфракрасным кварцевым подогревателем с таким расчётом, чтобы максимальный поток тепла приходился на область месторасположения отпаиваемого чипа.

Следующий шаг – обработка микросхемы поверхностного монтажа специальным флюсом. Демонтируемый чип, как правило, прямоугольной (квадратной) формы, обрабатывается способом равномерного нанесения по периметру небольшого количества геле-образного флюса.

Обработка демонтируемого чипа BGA специальным флюсом – обмазка геле-образным веществом четырёх сторон корпуса микросхемы, используя пластиковый шприц

Далее согласно технологической процедуре:

  • включить инфракрасный нижний подогреватель,
  • дождаться расплавления нанесённого флюса,
  • при температуре 250-300ºC удалить угловые пластиковые фиксаторы чипа,
  • после достижения температуры 300-325ºC задействовать паяльный фен.

Верхний прогрев микросхемы паяльным феном

Паяльным феном прогрев чипа поверхностного монтажа типа BGA выполняется по верхней стороне микросхемы. Если используется паяльная станция с регулятором температуры, параметры обычно выставляются на диапазон 350-400ºC. Равномерно направляя воздушный поток фена на область микросхемы, дожидаются полного расплава олова.

Момент полного расплава можно определить периодической проверкой состояния чипа. Как только чип начинает «покачиваться» на месте крепежа, пришло время применить инструмент вакуумной присоски.

Инструментом-присоской цепляются по центру корпуса микросхемы и попросту снимают чип с места установки. При полном расплаве олова эта операция не вызывает никаких трудностей.

Подготовка посадочной области микросхемы на плате

После удаления неисправной микросхемы поверхностного монтажа (BGA) следует подготовить место установки. Подготовка заключается в проведении «зачистки» контактных площадок под оловянные «шары» новой микросхемы. Для этой процедуры достаточно применить обычный паяльник с жалом – хорошо заточенным, имеющим ровные рабочие грани.

Процедура зачистки посадочного места микросхемы поверхностного монтажа (BGA) с помощью обычного паяльника. Процесс занимает по времени не более одной-двух минут

Предварительно место «зачистки» обрабатывают небольшим количеством флюса под пайку BGA и далее аккуратно счищают жалом паяльника остатки олова.

Радиолюбители применяют разные способы для очистки, в том числе, вариант, когда используется кабельная оплётка. Но практика состоявшегося радиолюбителя показывает, вполне достаточно одного паяльника, терпения и аккуратности.

Установка и пайка нового исправного компонента

На следующем этапе подготовленный для замены чип BGA следует поместить на место демонтированной микросхемы. При этом необходимо соответствовать маркерам (линиям) на электронной плате, включая маркер «ключа», который указывает правильную позицию чипа согласно рабочим контактам.

Далее включается инфракрасный кварцевый подогреватель нижнего нагрева, плата прогревается до момента расплава флюса. Включают паяльный фен и выполняют прогрев верхней области микросхемы поверхностного монтажа до температуры 350-400ºC.

Вот, собственно и всё. Новая микросхема типа BGA установлена взамен неисправной. Материнская плата ноутбука готова к работе. Более подробно на видео ниже.

Видео мастер-класс отпайки (пайки) микросхемы BGA

Демонстрация видеороликом процесса демонтажа неисправного чипа с последующей установкой на замену исправной микросхемы BGA. Ремонт материнской платы ноутбука в домашних условиях со всеми подробностями:

Заключительный штрих по пайке чипов BGA

Как показывает текст выше, процедура замены (перепайки) микросхем поверхностного монтажа на различных электронных платах – задача вполне решаемая. Причём сделать эту работу можно в домашних условиях при условии наличия соответствующего инструмента. Владение навыками замены микросхем BGA открывает широкие просторы для организации собственного бизнеса по ремонту бытовой электронной техники.

Высокоскоростной USB программатор «Sofi SP8-A» от фирмы «Sunrom»

Промышленный контроллер pCOxs на управление HVAC

Что такое ZVS в электронике + переключение при нулевом напряжении

КРАТКИЙ БРИФИНГ

Zetsila — публикации материалов, интересных и полезных для социума. Новости технологий, исследований, экспериментов мирового масштаба. Социальная мультитематическая информация — СМИ .

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector